MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL
 Paper Code : PC-EE 601/PC-EEE 601 Power System-II
 UPID : 006603

Time Allotted : 3 Hours
Full Marks :70
The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :
$[1 \times 10=10]$
(I) What is the expression of fault current in case of LG fault?
(II) What will be nature of stability if the torque angle δ continuously increases?
(III) What is the purpose of Buchholz relay?
(IV) What is the difference between per unit impedances of a transformer referred from the primary and secondary side?
(V) What is the main criterion for selecting the size of a distributor for a radial distribution system?
(VI) In which bus of the power network, voltage magnitude and angle are unknown?
(VII) A 100 kVA transformer has a reactance of 6%. What will be value of its reactance at 300 kVA base?
(VIII) What do you mean by distribution system?
(IX) For which condition, a voltage-controlled bus is treated as a load bus in subsequent iteration?
(X) What is the value of positive sequence component of voltage at the point of fault in case of 3-phase fault?
(XI) A $11 \mathrm{kV}, 10 \mathrm{MVA}$ alternator has impedance of 0.10 p .u when referred to its ratings as bases. What will be the new value for base as $110 \mathrm{kV}, 20 \mathrm{MVA}$?
(XII) What is the function of feeder in distribution system?

Group-B (Short Answer Type Question)

Answer any three of the following :
2. What are the fundamental requirements of protective relaying? Depending upon their (i) construction and principle of operation and (ii) time of operation, how relays are classified?
3. What do you mean by sub-station? Classify the substations.
4. A single phase transformer is rated as $2.5 \mathrm{kVA}, 11 / 0.4 \mathrm{kV}$. If the leakage reactance is 0.96 ohm when referred to low-voltage side, then determine its leakage reactance in per unit.
5. A 2 -wire d.c. ring distributor is 300 m long and is fed at 240 V at point A . At point $\mathrm{B}, 150 \mathrm{~m}$ from A , a load of 120 A is taken and at $C, 100 \mathrm{~m}$ in the opposite direction, a load of 80 A is taken. If the resistance per 100 m of single conductor is 0.03 Ohm , find
(i) current in each section of distributor
(ii) voltage at points B and C
6. A generator of negligible resistance having 1.0 per unit voltage behind transient reactance is subjected to different types of faults.
Type of Fault
3-phase
Resulting fault current in p.u

L-L
3.33

L-G
2.23

Calculate the per unit values of 3 sequence -reactance.

Group-C (Long Answer Type Question)

Answer any three of the following :
$[15 \times 3=45]$
7. (a) What do you mean by Per Unit (pu) system?
(b) What are the advantages of Per Unit (pu) system?
(c) An $11 / 0.4 \mathrm{kV}, 200 \mathrm{kVA}$ transformer has an equivalent impedance of $(2.4+j 12.4)$ Ohms referred to the hv side. Determine the base values for the p.u. system, the per-unit equivalent impedance and the equivalent impedance drop at one-half rated current.
8. (a)

What are the compaisons between overhead distribution system and underground distribution system?
(b) What are the advantages of double end fed distribution system over single end fed distribution system?
(c) A 2-wire dc distributor cable AB is 2 km long and supplies loads of $100 \mathrm{~A}, 150 \mathrm{~A}, 200 \mathrm{~A}$ and 50A situated $500 \mathrm{~m}, 1000 \mathrm{~m}, 1600 \mathrm{~m}$ and 2000 m from the feeding point A. Each conductor has a resistance of $0.01 \mathrm{Ohm} / 1000 \mathrm{~m}$. Calculate the potential difference at each load point if a p.d. of 300 V is maintained at point A .
9. (a) Classify different kind of distribution system along with relevant diagrams.
(b) A 250 m , 2-wire dc distributor fed from one end is loaded uniformly at the rate of $1.6 \mathrm{~A} / \mathrm{metre}$. The resistance of each conductor is 0.0002 Ohm/metre. Find the voltage necessary at feed point to maintain 250 V (i) at the far end (ii) at the mid point of the distributor.
(c) What are the advantages of ac system over dc system?
10. (a) What are the comparisons between Gause-Seidel method and Newton-Raphson method?
(b) Why generator bus is called PV bus?
(c) The following is the system data for a load flow solution:

The line admittances:
Bus code Admittance(p.u.)
1-2
2-j8.0
1-3
1-j4.0
2-3 $\quad 0.666-\mathrm{j} 2.664$
2-4 $1-\mathrm{j} 4.0$
3-4 2-j8.0
The schedule of active and reactive powers:

Bus code	$P(P . u)$	$Q(P . u)$	$V(P . U)$.	Remarks
1	-	-	1.06	Slack
2	0.5	0.2	$1+\mathrm{j} 0.0$	PQ
3	0.4	0.3	$1+\mathrm{j} 0.0$	PQ
4	0.3	0.1	$1+\mathrm{j} 0.0$	$P Q$

If bus 2 is taken as generator bus with voltage magnitude=1.04 p.u and reactive power constraint is

$$
0.1 \leq Q 2 \leq 1.0
$$

Determine the voltages starting with a flat voltage profile and assuming accelerating factor as 1.0.
11. (a) Derive sequence voltages in case of solidly earthed L-G fault with the help of symmetrical component method.
(b) Find out different sequence current components in term of positive sequence current component, fault current and draw the sequence impedance network for L-G fault.
(c) A 3-phase star connected alternator is rated $30 \mathrm{MVA}, 13.8 \mathrm{kV}$ and has following sequence reactance values:
$X_{1}=0.25$ p.u., $X_{2}=0.35$ p.u., $X_{0}=0.10 p$.u. The neutral of the alternator is solidly grounded. Determine the alternator line currents when a double line-to-ground fault occurs on its terminals. Assume that the alternator is unloaded and is operating at rated voltage when the fault occurs.

```
*** END OF PAPER ***
```

